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1. Introduction. Suppose a random sample xl,x ,ocnpxn is given, assumed

2
to be drawn from a population with continuous distribution F(x;0), where

8 is a vector of parame-ers. Some cor all of the components of 6 may be
unknown, and when they are estimated by efficient estimators, say by maximum
likelihood, we write 5 fcr.the vector 6, with estimated'components where
necessary. A well-known class of goodness-~of~fik tests 1s based on the EDF.
(empiriéal distribution function); the test statistics are measures of the
discrepancy v(x) = VE(Fn(x) ~ F{x:;0)), for the case where 0O is known.
Important statistics are D-!" = sup vi{x), D = sgp(-y {x)}, D = max (D+,D-);

? o IV 06 (%) aF,

vV = D+ +D, W2 (S fyz{y)dy; U2 = f{y(x) - ;526F; A
where ¥ = F({x;8) ‘and m2(x} = {F(lmF)}~l.and integrals are from - to =.

When 8 is known, as above, we refer to the test situation as Case 0. When
0 is replaced by g,-the dist;ibutions {including asymptotic distributions) of EDF
statistibsfére greatly changed. When unknown components of 6 are-location.and
scale paraneters, the diétributions do not depend on the correct values of these
parameters but only on the functional form of F. Two important examples
are Case 3, where F is the normal distribution with 8 = (u,cz), both
components unknéwn, and Case 4, where F(x:;0) = 1 - exp{-x/6) and 0 .is
unknown. The Case numbers follow those in Stephens (1974) where the statistics
above, and their power properties in the above situations, are discussed in
some detail; also discussed are Cases 1 and 2, where F(x:8) is the normal
distribution with, respectively,; only | or 02 unknown. For W2, U2 and
A2 asymptotic points can be dexived theoretically (Stephens, 1976; Durbin,
Knott and Taylor, 1975); for the D-group and V this has so far not been done.

For finite n, a number of authors have produced percentage points for

Cases 3 and 4 by Monte Carlo methods (for references see Stephehs)1974),



and for Case 4, some theoretical advances have been made by Durbin (1975b) and
by Margolin and Maurer (1976). Stephens {1970, 1974) used the exact and Monte
Carlo points

to make modifications to the above test statistics, so that for

each of Cases 0, 3 and 4, they can be useé with asymptotic percentage points only.

2. The half -sample method. Rao (1972) p;bduced an adaptation of the empirxical
process, using an estimate for ©, which would asymptotically behave as in
Case 0, but it is quite tedious to c;iculate. Durbin (1973) then pointed

out a much.simplér process with éhe same property. Suppose a randomly-—

chosen half of the x-sample is used to estimate unknown components of

-~
~

8, by efficient methods. This estimate 8 is used to construct F(x;0)

and EDF test statistics are calculated in the usual way, using the whole

~

sample. lAé}mptotically, ﬁhe behaviour of y(x) (with F(x;0) instead of
F(x;8)) is as though © were known completely, and EDF statistics will
have the distributions of Case 0 (Durbin 1973, p.59).

Two obvious applications would be .to testing of normality and exponentiality
as discussed above. For practical calculations, suppose % and S are the mean and
standard deviation of the random half-sawple; these replace %X and s in
the calculations for zi set forth in Section 3.1 of Stephens (1574). (Note
that there is a misprint in Case 4: z, should be given by z, = 1L - exp(-xi/;b,
and in the half-sample method z; would be 1 - exp(—xi/i)). The set z,
is calculatzad from the X, for the whole sample, and then the test statistics are

calculated as given by Stephens. Their asymptotic percentage points will be those in

his Table 1.0, and we shall see below that the finite-n modifications also

work well for most statistics (but importantly not Az).



3. The method of random substitution. Another technique for making a test

with unknown parameters into a Case 0 test has also bsen given by Durbin (1961).
When the method is applied to goodness-—of-fit tests, a combination of the
given sample and an arbitrarily chosen value of the unknown parameter (s)

is used to construct a new set, §, of sample values. Durbin calls this
procedure the method of random substitution, and shows that the distribution
function of the values x in $ 1is F({x,8), with & known; thus the
original null hypothesis can be tested using S and Case O points. 1In
subsequent work Durbin (19755, 1976) has further shown that the half-sample
device and the method of random substitdtion have empirical processes which
are asymptotically equivalent even 'for true distributions alternative to the
null; thus we can expect these two techniques to possess similar power prop-—

erties, at least for large samples. Durbin (1976} discusses the two methods

from a pgactical point of view, and suggests that the.half—sample technigue
is easier and more attractive in practice. The existence of this straight-
forward method then implies that the effort expended by many authors in find-
ing percentage points for Cases 3 and 4, as describsd in Section 1, might have
been unnecessary; one merely splits the sample, estimates parameters, and
refers to existing Case 0 points, at least for large samples! An obhjection,
for many statisticians, to the half-sample device (also to the method éf
random substitution) is that two statisticians can obtain different values
for test criteria from the same data. This objection does not apply to
standard Case 3 and Case 4 procedures; we now show that there is also a

considerable difference in power.



4. Comparison of the half-sample method and the standard Case 3 and Case 4

methods.

(a) Percentage points for finite n. If the half-sample device is followed,

the distributions of EDF statistics behave asymptotically as in Case 0: it
would be a remarkable bonus if the distributions for finite n were not too
different also. This has been investigatad as follows. For normal samples

of size n, the half-sample method for testing‘noxmality (called HS3) was
followed, and modified forms of EDF statistics calculated as in Stephens

{1974, Table 1.0). HopeZfully these would then have their Case 0 asymptotic
distributions, with the percentage points in that Table. Results based on
10,000 Monte Carlo samples are given in Table 1. It can be seen that the
results are very good, except for A2. The experiment was repeated for expon-—
ential samples, using the split-sample method for the exponential test (HS4),
with reéul%s in Table 2. Again A2 gives poor results, and also D+ and

D . Note that the A2 points are those for the unmodified statistic, because
in Case O A2 requires no modification for finite samples; "asymptotic” begins
at n = 3. In the power studies which follow, the Monte Carlo points in Tables

1 and 2 have been used for all the modified statistics.

(b) Power studiegf We next examine the power of HS3 and HS4 against the

rival 'standard' Case 3 and Case 4 techniques, also by Monte Carlo methods.
From various alternative distributions, at least 1000 samples of size n
were taken and tested by the two techniques. Table 3 gives the results

for testing normality, both parameters unknown, and Table 4 gives them

for the test for exponentiality, © unknown. The tables record the
percentage of Monte Carlo samples declared significant by the statistics when

tests were made at the 10% level. Tables are available also for 5% tests.



5. Discussion. (a) In Tables 3 and 4 it can be seen that the half~sample
method produces uneven powers for the various test statistics; these results
throw some light on the effect of the method. The null hypothesis is that
x has distribution F(x;0), and the test statistics are calculated Ffrom
values z, = F(xi;e*), i=1,2,...n, where 6% =8, or 6% is an estimate

when 0 is unknown. For Case 0, 0¥

i

0 and if the null hypothesis is
true the z, are uniformly distributed between 0 and 1; this is also true
for the zi found from the half-sample method,; oxr by the method of random
substitution. When the null hypothesis is not true, for any of these
techniques, the z; will not be uniform, and their pattern can be roughly"
determined by observing which test statistics are large. When D+ or D

are large, z—-values have moved towards 0 or 1 respectively; large D and

12 imply a shift of the mean to either right or left, and large V or

U2 imply a clustering of =z-values, or a division into two groupslfowards 0
and 1. Large values of A2 also imply values approaching either extreme.

As an illustration, consider the test for normality, on a sample of size

n = 10, when in fact the true distribution is Xif When the half-sample
method was used, it was found that in most samples the z—-values were almost
all between 0.1 and 0.4; thus D+ will be large, and the clustering makes
vV and U2 large also, leading to high powers for these statistics in Table
3. The relative powers thus give some indication of the z-pattern. When
standard Case 3 techniques are used in the same problem, the z-values do not
cluster together as above; the fitted normal curve is in fact close enough
to the EDF that no one statistic 1is overwhelmingly superior to the others.
This levelling of power in standard Case 3 and Cass 4 techniques was noted

previously (Stephens, 1974); it can be seen again throughout Tables 3 and 4.



(b) Turnirg now to the main comparison, we see that the half-sample method
is nowhere superior to use of standard Case 3 or Case 4 techniqﬁes, and the work
done in providing percentage points for these Cases has after all been . useful. Where
tables of psxcentage points for EDF statistics have been prepared for other distri-
butions under test, with unknown parameters, we might expect to find similar
comparisons. Such tables exist for thé Gamma distribution (Pettitt and
Stephens (1976)) and the extreme value distribution (Stephens, 1976b).

Among the EDF statistics it is clear from the tables that on the whole,
for a test for normality, the Kolmogorov D 1is a poor statistig, and that
A2 has a slight superiority over the others. This bears out results in
Stephens (1974, Tables 5 and 6). In Case 4, D is not relatively so weak;
also, if one were sure of the direction of skewness of the alternative

. . . s s + = . . .
distribution, statistics D .or D will give good power for this Case.

-~

Overall, however, A2 still scores best when this information is not avail-
zble. The evidence of both tables gives good support to A2 as an omnibus
test statistic for both Cases 3 and 4.

Finally we emphasise that this work does not obviate the usefulness
of the split-sample method for occasions where parameters to be estimated
are not location and/or scale parameters or where the necessary tables have
not been provided. Some comparisons are being made between this method and

Pearson's chi-square, its obvious rival inthese situations.
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Table 1

Uoper tail percentage points for modified EDF statistics:

half--sample test for normality.

The points are found £rom 10000 Monte Carlo samples for each sample size.

Statistic Sg?iie‘ o(%) : 10 5 2.5 1.0
D' 10 1.087 1.237 1.376 1.520
20 1.070 1.223 1.349 1.512
50 1.076 1.240 . 1.380 1.550
w '1.073 1.224 1.358 1.518

D 10 1.078 1.232 1.363 1.485
20 1.064 1.231 1.368 1.540

50 1.067 1.216  1.358 1.529
w 1.073 1.224 1.358 1.518

D 10 1.235 1.370 1.476 1.585
20 1.222 1.358 1.479 1.636

50 1.230 1.371 1.493 1.635

e 1.224 1.358 1.480 1.628

v 10 1.595 1.705 1.787 1.867
20 4 1.613 1.740 1.842 1.968

50 1.615 1.738 1.854 1.992

o 1.620 1.747 1.862 2.001
w2 10 .351 .456 .566 .711
20 .341 .457 .580 .779

50 . 351 . 480 .604 .767
w . 347 . 461 .581 .743
u? 10 .149 .182 .207 .230
20 .152 .184 .218 .256

50 .154 .188 .222 .267
o .152 .187 .221 .267

a2 10 ~3.00 4.55 6.68 10. 34
20 2.27 3.13 4.27 6.09

50 2.09 2.76 3.52 4.44

e 1.93 2.49 3.07 3.86




Table 2

Uppar tail percentage points for modified EDF statistics:

half -sample test for exponentiality

The points are found from 10000 Monte Carlo samples for each sample size.

statistic | “2e iy 10 5 2.5 1.0
size
D" 10 ' .943 1.088 1.215 1.362
‘ 20 .082 1.132 1.257 1.4
50 1.025 1.167 1.284 1.4
o '1.073-. 1.224 1.358 1.518
D 10 ' ©1.179 1.316 1.422 1.568
20 1.140 1.298 1.423 1.566
50 S 1.111 1.270 1.421 1.581
c . 1.073 1.224 1.358 1.518
D 10 1.230 1.354 1.465 1.596
20 1.228 1.351 1.471 1.619
50 1.222 1.363 1.499 1.635
e 1,224 1,358 1.480° 1.628
A 10 1.617 1.738 1.837 1.954
20 1.687 1.735 1.851 1.988
50 1.609 1.735 1.851 1.988
® 1.620 1.747 1.862 2.001
w2 10 .352 . 466 .579 .717
20 . 345 .464 .594 ..758
50 . 349 - .476 .598 .774
oo .347 . 461 .581 .743
u? 10 .152 .187 .218 .253
20 .151 .184 .219 ©.260
50 .151 .185 .220 .267
o .152 .187 .221 .267
% 10 2.18 2.99 3.92 5.60
20 2.05 . 2.69 2.50 4.50
50 1.99 2.66 3.29 4,31
@ 11.93 2.49 3.07 3.86




Table 3

Comparison of powerx, test for normality:

half -sample method (HS) verxsus standard Case 3 (C3).

The table gives the percentage of Monte Carlo samples declared significant
by the test statistics. The test is at the 10% level.

True ) s + S 2 2 .2

distribution| ©° |Method| Statistic:. D D D Vv W v a
uniform |10 | HS o 10 11 © 10 10 10
10| ¢3 9 7 14 18 16 18 16
20 uS i1 13 12 16 10 15 11
20{ c3 16 16 21 28 29 32 31

_ .

X3 10| =HS 33 7 22 48 21 50 18
10 c3 68 33 67 16 77 16 79
201 ®us 55 33 51 84 50 82 58
20| c3 95 87 94 97 98 97 o8
x; 10| wus 23 7 18 20 15 30 13
10| c3 45 9 43 52 53 52 56
20| Hs 40 12 31 .59 29 56 31
20! c3 75 40 6 77 79 76 84
xz 10| wus 16 7 13 18 12 18 10
10| c3 28 4 27 32 32 32 34
20| wus 28 7 20 33 19 33 19
20| c¢3 50 8 42 46 53 49 58
Xé 10| us 15 8 13 15 12 16 13
10] c3 25 3 25 25 26 26 28
20| Hs 23 6 16 26 14 26 15
20| c3 43 4 35 324 40 36 44
Cauchy 10| us 23 25 35 42 31 44 23
10] ¢3 50 48 65 67 67 67 67
20! Hs 47 47 61 71 58 72 66
20| c3 79 8 88 90 91 91 ol
log- 10| Hs 28 7 21 38 19 38 17
gorel 10| c3 62 20 5 66 67 66 69
20| ms 52 22 44 71 43 70 49
201 c3 90 65 87 90 92 90 93




Table 4

Comparison of power, test for exponentiality:

half ~-sample method (HS) versus standaxd Case 4 (C4).

10.

The table gives the percentage of Monte Carlo samples declared significant
by the test statistics. The test is at the 10% leval.

True . . + - 2 2 2
distribution n Method |[Statistic: D D D v w u A
uniform 10 HS 3 24 20 44 18 a1 10
10 ca 1 55 43 a8 51 48 45
20 HS 10 50 40 74 43 68 35
20| ca 14 83 70 79 82 75 80

xi 10 HS 35 8 22 20 21 20 39 -
10 ca 42 2 32 29 35 30 53
20 HS 54 8 37 49 40 50 61
20 ca 69 1 55 43 60 51 77
Xo 10| Hs 3 22 18 28 17 29 10
10 ca 1 46 35 32 40 36 33
420 HS 3 38 20 47 31 49 26
20 ca 1 70 54 50 61 54 60
Xz 10| =us 2 36 30 51 29 56 15
10 ca o 74 62 .60 71 65 65
20 uS 5 74 64 88 65 90 59
20 ca 3 96 91 88 95 91 95
half- 10 HS 38 7 30 29 30 30 41
SE 17 10 ca 49 4 43 39 47 41 49
20 HS 55 6 43 50 48 50 60
20 ca 73 2 68 59 70 6L 70
log- 10 HS 13 11 14 13 14 13 13
iors S 10 ca 12 15 18 17 18 17 15
20 HS 19 14 19 22 20 22 18
20 ca 18 18 21 22 23 25 23
half- 10 HS 3 16 13 19 13 19 9
s 10 ca 1 25 20 19 22 21 18
20 HS 3 24 17 25 17 25 14
20 ca 1 45 28 26 33 28 29
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